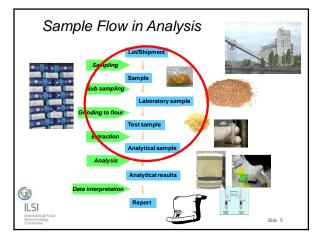
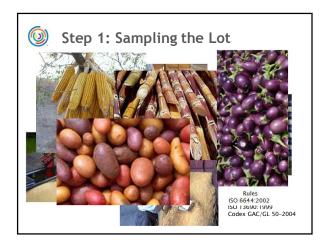

November 17 - 19, 2011, NIN, Hyderabad, India

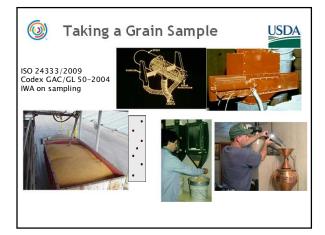

🥘 Sampling

- Why sampling is necessary
- How do we Sample?
- Use of sampling approaches
- Conclusions

Why Sample?

- Much more cost effective than inspecting the entire lot
- 100% certainty requires inspection of every particle
- Testing is destructive
- Sampling precludes 100% certainty no guarantees of "non-transgenic" or "transgenic-free"
- Design sampling to provide high levels of confidence that sample 'represents' bulk lot


Processing a sample

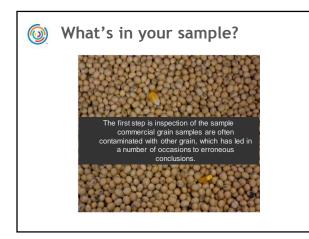

- 1. Take a sample of the seed, grain or food and send to the laboratory
- 2. Inspect the sample and record characteristics
- 3. Obtain a subsample (Laboratory sample)
- 4. Grind the sample (if seed/grain, or particulate food)
- 5. Obtain a subsample (Test sample)
- Possibly re-grind the sample
- Extract the analyte from the subsample
 Measure the efficiency of extraction, and quality of extract
- 8. Obtain a subsample (Analytical sample)
- 9. Perform the analysis

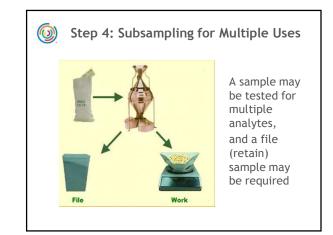
November 17 - 19, 2011, NIN, Hyderabad, India

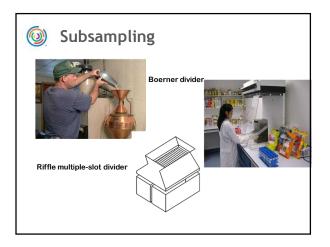
Processing a sample

- 1. Take a **sample** of the seed, grain or food and send to the laboratory
- 2. Inspect the **sample** and record characteristics
- 3. Obtain a **subsample** (Laboratory sample)
- 4. Grind the **sample** (if seed/grain, or particulate food)
- 5. Obtain a **subsample** (Test sample)
- Possibly re-grind the sampleExtract the analyte from the subsample
- 7. Measure the efficiency of extraction, and quality of
- extract 8. Obtain a **subsample** (Analytical sample)
- 9. Perform the analysis

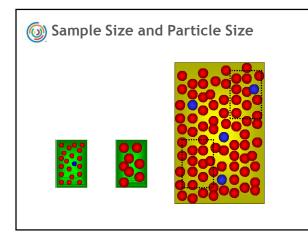
Step 2: Arrival at the laboratory

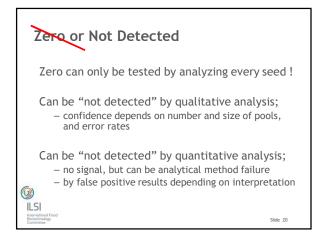

- The handling of a sample once it arrives at the laboratory is a critical step.
- Samples must be followed in a record system to ensure they are handled appropriately.
 - High throughput laboratories typically have a computer system with database that tracks samples through the system
 - Low throughput laboratories typically do this by hand





Workshop and Training Program on Sampling and Detection Methods Applied to Transgenic Crops November 17 – 19, 2011, NIN, Hyderabad, India

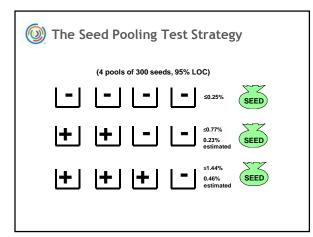




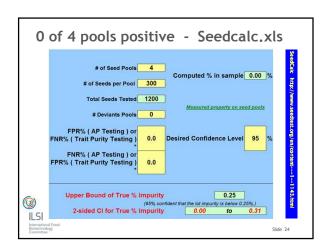
Effect of Sample and Particle Size

- All samples consist of particles
 - Grain – Flour, meal
 - Molecules in solution (protein, DNA)
 - Containers
- A sample is a subset of particles from the bulk lot
- Sample size and particle size determine the number of particles in sample
- More particles are present in a sample of finer particles

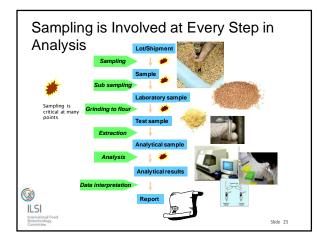
November 17 - 19, 2011, NIN, Hyderabad, India

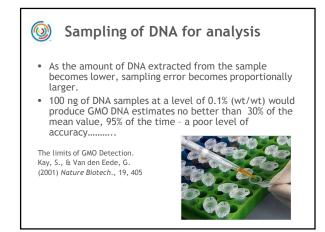


If one transgenic seed is contained in a total of:	Testing a sample of 200 seeds yields a positive result:	Testing a sample of 1,000 seeds yields a positive result:	Testing a sample of 3,000 seeds yields a positive result:	Testing a sample of 10,000 seeds yields a positive result:
1,000 seeds	18% of the time	63% of the time	95% of the time	99.99% of the time
10,000 seeds	2% of the time	9.5% of the time	26% of the time	63% of the time
80,000 seeds	0.2% of the time	1.2% of the time	3.7% of the time	11.8% of the time
1,000,000 seeds	<0.1% of the time	<0.1% of the time	<0.1% of the time	3% of the time



Threshold Testing


- Test to control distribution of grain
- Determine statistical probability that load is above or below threshold
- Use existing equipment and infrastructure
- Well established sampling protocols (e.g. USDA) to obtain a representative sample
- Rapid, protein strip tests
- Knowing the number of particles (seeds) in the sample allows estimation of maximum % transgenic



November 17 - 19, 2011, NIN, Hyderabad, India

Summary

- Sampling is the best way to get an estimate of the % transgenic in a lot
 - Improper sampling leads to false, imprecise and variable results
 - Representative samples are used
- Sample size is a balance between
 - Sensitivity
 - Cost
 - Probability of false negative results
- Sampling occurs throughout the analytical process

